
https://www.salvis.com/blog@phsalvisberg

Oracle Multilingual Engine (MLE)
Java, JavaScript, Python or PL/SQL in the Database

Philipp

Philipp
• Database centric development

• Model Driven Software Development

• Author of free SQL Developer Extensions
PL/SQL Unwrapper, PL/SQL Cop,
utPLSQL, plscope-utils, oddgen and
Bitemp Remodeler

@phsalvisberg https://www.salvis.com/blog

Agenda

1. Code in the Database
2. GraalVM
3. Version 12c – Beta (Experimental)
4. Version 21c – Production (Sensible Guess)
5. Version 30c – Production (Highly Speculative)
6. Core Messages

Code in the Database

Processing Data

Client Code

EMEA
61%

AMER
23%

APAC
16%

Database

some TB

number of requests?

number of response packets?

Bring data to the code or
bring code to the data?

SELECT region, sum(sales)

FROM ... GROUP BY region

Bring Code to the Data

Client Code

EMEA
61%

AMER
23%

APAC
16%

Database

some TB

one request

one response packet

Minimize communication
for good performance

Languages in Oracle Database 19c

Connection is enough

• SQL

• PL/SQL

• XSLT

• XQuery

Needs a PL/SQL wrapper

• C

• Requires command line access on the DB
server

• Java

• Requires access to loadjava

• Simple Java sources without additional
dependencies can be installed with SQL

GraalVM

Properties

• Polyglot

• Languages

• Embeddable

• Databases

• HTTP-Server

• Efficient

• Standalone

• Interoperability
(shared memory)

Source: https://www.graalvm.org/docs/

https://www.graalvm.org/docs/

Architecture Today

Java Hotspot VM

Java-Level JVM Compiler Interface (JEP 243)

Graal Compiler

Truffle Framework

Sulong (LLVM)

Architecture Tomorrow

Java Hotspot VM

Java-Level JVM Compiler Interface (JEP 243)

Graal Compiler

Truffle Framework

Sulong (LLVM)

Truffle Framework

Performance

Source: https://youtu.be/8AYESZIaacg?t=1002

Graal: High-Performance Polyglot Runtime by Thomas Wuerthinger and Aleksandar Prokopec, Voxxed Days, Zürich, March 2018

https://youtu.be/8AYESZIaacg?t=1002

Open Source

Source: https://www.graalvm.org/downloads/

https://www.graalvm.org/downloads/

Version 12c – Beta
(Experimental)

MLE Beta History

13-Sep-2017 02-Nov-2018 13-Dec-2018

Documentation

Source: https://oracle.github.io/oracle-db-mle/docker/

https://oracle.github.io/oracle-db-mle/docker/

2. Create container

docker import mle-docker-0.3.0.tar.gz

docker run --privileged --name mle2 \

-p 1581:1521 -p 5081:5500 \

-e ORACLE_SID=mlecdb \

-e ORACLE_PDB=mlepdb1 \

-e ORACLE_PWD=oracle \

-v /Users/phs/docker/mle2/oradata:/opt/oracle/oradata \

-v /Users/phs/docker/mle2/myproject:/home/oracle/myproject \

mle-docker:0.3.0

Create Docker Container

1. Load image from downloaded archive file

2. Install nodejs and dependencies-bundler browserify within the mle2 container

docker exec -u root --privileged -it mle2 bash

yum install -y gcc-c++ make

curl -sL https://rpm.nodesource.com/setup_6.x | bash -

yum install -y nodejs

npm install -g browserify

Install Node.js

1. Open a shell in within the MLE docker container as ”root”

2. Open a shell in within the MLE docker container as "root"

docker cp sqlcl mle2:/opt/oracle/product/12.2.0.1/dbhome_1/sqlcl/

docker exec -u root --privileged -it mle2 bash

Install SQLcl

1. Copy downloaded and extracted SQLcl folder into the mle2 container

3. Fix privileges and set environment within the mle2 container

chown -R oracle:oinstall /opt/oracle/product/12.2.0.1/dbhome_1/sqlcl/

echo "export PATH=\$ORACLE_HOME/sqlcl/bin:\$PATH" >> /home/oracle/.bashrc

echo "export LC_ALL=en_US.UTF-8" >> /home/oracle/.bashrc

Use Case – Sentiment Analysis

I like it. Works
perfectly,
awesome!

WTF. Never
bought a worse

product,
disappointing!

Open Data: https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#datasets

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#datasets

npm – Package Manager for JavaScript

Source: https://www.npmjs.com/package/sentiment

https://www.npmjs.com/package/sentiment

2. Install package in your project directory

docker exec -it mle2 bash

cd myproject; mkdir –p demo; cd demo

npm install sentiment

Install "sentiment" Package

1. Open a shell in within the MLE docker container

function analyze(phrase) {

var Sentiment = require('sentiment');

var sentiment = new Sentiment();

var result = sentiment.analyze(phrase);

return JSON.stringify(result, null, 3);

}

module.exports.analyze = analyze;

JavaScript Wrapper

analyze.js

node -p 'require("./analyze.js")

.analyze("I like it. Works perfectly, awesome!")'

Positive Sentiment – Test via Node.js

{

"score": 9,

"comparative": 1.5, …

"tokens": [

"i",

"like",

"it",

"works",

"perfectly",

"awesome"

],

…

"words": [

"awesome",

"perfectly",

"like"

],

"positive": [

"awesome",

"perfectly",

"like"

],

"negative": []

}

2. Create and JavaScript DDL and install it with SQLcl

browserify analyze.js -s analyze -o analyzeBundle.js

SET SCAN OFF

CREATE OR REPLACE JAVASCRIPT SOURCE NAMED "analyzeBundle.js" AS

{content of analyze-bundle.js}

/

Deploy Into Database – without dbjs (1)

1. Create single JavaScript bundle file including all dependencies

CREATE OR REPLACE FUNCTION analyze(

in_phrase IN VARCHAR2

) RETURN VARCHAR2 AS

LANGUAGE JAVASCRIPT

NAME 'analyzeBundle.js.analyze(phrase string) return string';

Deploy Into Database – without dbjs (2)

3. Create PL/SQL wrapper and install it

Supported
Data Types?

NUMBER
BINARY_DOUBLE

VARCHAR2
DATE

SELECT analyze('WTF. Never bought a worse product, disappointing!')

FROM dual;

Negative Sentiment – Test Query

{

"score": -9,

"comparative": -1.2857142857142858, …

"tokens": [

"wtf",

"never",

"bought",

"a",

"worse",

"product",

"disappointing"

],

…

"words": [

"disappointing",

"worse",

"wtf"

],

"positive": [],

"negative": [

"disappointing",

"worse",

"wtf"

]

}

WITH

base AS (

SELECT analyze(text) AS jdoc, text

FROM router),

scored AS (

SELECT to_number(json_value(jdoc, '$.score')) AS score,

round(to_number(

json_value(jdoc, '$.comparative')), 2) AS comparative,

text

FROM base)

SELECT score, comparative, text

FROM scored

ORDER BY score, comparative

FETCH FIRST 10 ROWS ONLY;

Negative Sentiment – Test Query

SCORE COMPARATIVE TEXT

----- ----------- ---

-8 -0.57 All in all , bad device , bad customer

service ... run like hell from this product

-8 -0.47 Exasperated at 3 AM , I called it quits and

will be sending this awful , deceptive

product back

…

-5 -0.15 I suspect Netgear takes defective returns ,

wraps them in new plastic , and labels them

" Refurb , " and hopes they work or that

whatever defect they had would not be noticed

by the new buyer

10 rows selected.

Top 10 Negative Sentiments – Result

Version 21c – Production
(Sensible Guess)

MLE in Oracle Database 21c

• Stored Objects based on GraalVM for
JavaScript and Python

• Dynamic execution of GraalVM languages for
JavaScript and Python

• Interoperability between all languages via SQL
and PL/SQL for a subset of data types

• Run dynamic SQL from JavaScript and Python
via default connection

• No dbjs and dbpy as part of the Oracle
Database

• No access to network nor file system via
JavaScript and Python

• No references to other MLE modules

• Deliberately undocumented features, e.g. to
implement aggregate or table functions in
JavaScript

• Java based on OJVM without dependencies
between OJVM and GraalVM

Some Open Questions

How to Deal with the
Growing Language Base?

• Dedicated tool chain for each language (like "dbjs" and "dbpy")?

• Generic tool chain, configurable for each language?

• Include less common languages that are part of the GraalVM distribution?

• Include custom languages?

• Update, upgrade embedded GraalVM?

How to Integrate
Package Managers/Repositories?

• Examples

• Maven Central for Java (incl. other public and private repositories)

• npm for JavaScript

• PyPi for Python

• RubyGems for Ruby

• NuGet for .NET

• Dealing with references to foreign packages during deployments?

• Security vs. usability

• Solution for languages without package managers/repositories?

How to Deal with
"non-browserify-able" Languages?

• browserify and webpack

• produce a single source incl. dependencies for JavaScript

• make deployments simpler and faster

• Some languages like Java are “non-browserify-able”

• What are the concepts to store ”non-browserify-able” language files for GraalVM?

• Is it really necessary to store every file in a JAR file as a separate database object?

What Happens to the
Existing Languages in the Database?

• Namely

• SQL

• PL/SQL

• XSLT

• XQuery

• Java

• C

• Technically they could all run on GraalVM,
right?

• Static SQL and PL/SQL are special though, as
the compiler needs a connection

Version 30c – Production
(Highly Speculative)

MLE in Oracle Database 30c (1)

• All code in the Oracle Database is running on GraalVM

• C (kernel, custom libraries), C++

• Java, Scala, Kotlin, Groovy, Clojure, …

• SQL (many dialects), PL/SQL, T-SQL, …

• XSLT, XQuery, …

• JavaScript, Phyton, R, Ruby, …

• C#, Visual Basic .NET, …

• Enable/disable optional and custom languages

• Efficient interoperability between all languages supporting all data types

• Run static and dynamic SQL from all languages via default connection

MLE in Oracle Database 30c (2)

• Controlled access to network and file system for all languages

• Integration with “Oracle Universal Package Manager”

• Free cloud service for public packages, supporting all languages

• Cost option for private packages

• Integration with other package managers/repositories such as npm, Maven Central

• Manages local copies, security aspects, and more …

• Ad-hoc use of all languages in SQL

• E.g. in the with_clause of a select statement

• Including references to other packages known by the Universal Package Manager

• OJVM is not available anymore

MLE in Oracle Database 30c (3)

• Moving code at runtime between
Java Virtual Machines

• Based on statistics

• To reduce network roundtrips

• To improve overall runtime performance

Core Messages

The Future Is Bright

• GraalVM is polyglot, embedded, efficient,
open-sourced.

• Code in the client or database server?

• Option to choose

• Easier to move

• Database centric development becomes easier
when additional languages (besides PL/SQL)
are treated as first-class citizens.

