
BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENF
HAMBURG KOPENHAGEN LAUSANNE MÜNCHEN STUTTGART WIEN ZÜRICH

Fighting Bad PL/SQL

Philipp Salvisberg

@phsalvisberg

About Me

2

Trivadian since April 2000

– Senior Principal Consultant, Partner

– Member of the Board of Directors

– www.salvis.com/blog

– @phsalvisberg

Database centric development with Oracle database

Fond of DSLs to build full stack solutions efficiently and keep them manageable

Author of free SQL Developer Extensions PL/SQL Cop, PL/SQL Unwrapper,
oddgen and Bitemp Remodeler

Fighting Bad PL/SQL04.12.2016

Agenda

Fighting Bad PL/SQL3 04.12.2016

1. Introduction

2. Metrics

3. Core messages

Fighting Bad PL/SQL4 04.12.2016

Introduction

Losing Weight

Fighting Bad PL/SQL5 04.12.2016

Set Targets – Measure Actuals

Fighting Bad PL/SQL6 04.12.2016

Weight in Kilogram

Body Fat Percentage

Skeletal Muscles in Kilogram

Height in Centimeter

Abdominal girth in Centimeter

Girth of … in Centimeter
Body-Mass-Index (𝑏𝑚𝑖 = %&'()*+,-(

)&'()*+,.&*&/0)

Measuring Code Quality

Fighting Bad PL/SQL7 04.12.2016

Source: http://www.osnews.com/story/19266/WTFs_m; Clean Code, Robert C. Martin, 2009

"How can we make sure we wind up
behind the right door when the going
gets tough?"

"The answer is: craftsmanship."

Trivadis PL/SQL & SQL Coding Guidelines

Fighting Bad PL/SQL8 04.12.2016

Openly available since August 2009

Download for free from www.trivadis.com

Fighting Bad PL/SQL9 04.12.2016

Metrics

PL/SQL Cop

Fighting Bad PL/SQL10 04.12.2016

Command-Line

§ Code folder

§ Snapshot reports

§ Since 2013

SonarQube

§ Code folder

§ Snapshot/delta reports

§ Metric repository
§ Thresholds
§ Evolvement

§ Continuous Integration

§ Since 2015

SQL Developer

§ Editor content

§ Snapshot reports

§ Since 2014 (free)

Checks code against Trivadis PL/SQL & SQL Guidelines. Calculates various metrics.

Download from: https://www.salvis.com/blog/download/

Simple Metrics (Number of …)

Fighting Bad PL/SQL11 04.12.2016

McCabe's Cyclomatic Complexity

Fighting Bad PL/SQL12 04.12.2016

Number of paths in code

𝑀 = 𝐸	 − 𝑁 + 2𝑃
– M = Cyclomatic Complexity

– E = Number of edges

– N = Number of nodes

– P = Connected components
(number of programs)

Additional Path for Goto?
– 15 – 11 + 2*1 = 6 (Toad)

– 14 – 11 + 2*1 = 5 (correct)

For	i	…

For	j	…

If	substr...

L_isdigit	:=	
true

Goto

If	substr...

Raise…

...

...

Definition: http://www.mccabe.com/pdf/mccabe-nist235r.pdf (1976-1996)

Cyclomatic Complexity – Drivers & Assessment

Fighting Bad PL/SQL13 04.12.2016

Basic Loops

Cursor For Loops

While Loops

If branches (if, elsif)

Case branches (when)

Exception handlers (when)

Toad Code Analysis compatibility

– Else in if/case branches

– PL/SQL blocks

– Gotos

Cyclomatic
Complexity

Complexity evaluation

<11 Reasonable:
An average programmer should be
able to comprehend and
maintain this code.

11..50 Challenging:
More senior skills most likely
required to comprehend and
maintain this code.

>50 Too complex:
Candidate for re-design or re-
factoring to improve
readability and maintainability.

Halstead Volume

Fighting Bad PL/SQL14 04.12.2016

n1 = number of distinct operators

n2 = number of distinct operands

N1 = total number of operators

N2 = total number of operands

Program length 𝑁 = 𝑁1 + 𝑁2

Program vocabulary 𝑛 = 𝑛1 + 𝑛2

Volume 𝑉 = 𝑁	× log@ 𝑛		

Operators (based on Toad):
– if, then, elsif, case, when, else, loop, for-

loop, forall-loop, while-loop, exit, exit-when,
goto, return, close, fetch, open, open-for,
open-for-using, pragma, exception,
procedure-call, assignment, function-call,
sub-block, parenthesis, and, or, not, eq, ne,
gt, lt, ge, le, semicolon, comma, colon, dot,
like, between, minus, plus, star, slash,
percent

Operands (based on Toad):
– identifier, string, number

Applicable within SQL
statements. Plain SQL
operators are missing!

Definition: Elements of Software Science (1977)

Halstead Volume – Example

Fighting Bad PL/SQL15 04.12.2016

Operators
– goto: 1, function-call: 4, if: 2, for-loop: 2,

comma: 5, not: 1, assignment: 4, semicolon: 19,
then: 2, procedure-call: 1, eq: 1

Operands
– 'Password must contain a digit.': 1,

co_digitarray: 3, check_pw_char: 2,
simple_integer: 2, co_errno: 2,
raise_application_error: 1, length: 2, false: 1,
boolean: 1, check_other_things: 2, substr: 2,
20501: 1, l_len_pw: 3, co_one: 5, l_isdigit: 4,
in_password: 2, check_digit: 2, true: 1, j: 2,
'0123456789': 1, i: 2, 1: 1, string: 2, pls_integer:
2, co_errmsg: 2, l_len_array: 3

Halstead Volume – Assessment

Fighting Bad PL/SQL16 04.12.2016

n1 =	number	of	distinct	operators	(11)

n2 =	number	of	distinct	operands	(26)

N1 =	total	number	of	operators	(42)

N2 =	total	number	of	operands	(52)

Program	length	𝑁 = 𝑁1 + 𝑁2 (94)

Program	vocabulary	𝑛 = 𝑛1 + 𝑛2 (37)

Volume	𝑉 = 𝑁	× log@ 𝑛		(490)		

Halstead
Volume

Complexity evaluation

<1001 Reasonable:
An average programmer should be
able to comprehend and
maintain this code.

1001..3000 Challenging:
More senior skills most likely
required to comprehend and
maintain this code.

>3000 Too complex:
Candidate for re-design or re-
factoring to improve
readability and maintainability.

Maintainability Index (MI)

Fighting Bad PL/SQL17 04.12.2016

Weighs comments and combines it with Halstead Volume and Cyclomatic Complexity

𝑎𝑣𝑒𝑉 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝐻𝑎𝑙𝑠𝑡𝑎𝑑	𝑉𝑜𝑙𝑢𝑚𝑒 = ∑ klmn,'*×o�
�
klmq'r&

𝑎𝑣𝑒𝑀 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑ klmn,'*×.�
�
klmq'r&

𝑎𝑣𝑒𝐿𝑂𝐶 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑙𝑖𝑛𝑒𝑠	𝑜𝑓	𝑐𝑜𝑑𝑒 = ∑ klmn,'*�
�

,n{|&/lq},'*~

𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑙𝑖𝑛𝑒𝑠	𝑜𝑓	𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = ∑ r',&~lqm�{{&,*+,},'*�
�

,n{|&/lq},'*~

𝑀𝐼𝑤𝑜𝑐 = 𝑀𝐼	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 = 	171 − 5.2× log& 𝑎𝑣𝑒𝑉 − 0.23×𝑎𝑣𝑒𝑀 − 16.2×	log& 𝑎𝑣𝑒𝐿𝑂𝐶

𝑀𝐼𝑐𝑤 = 𝑀𝐼	𝑐𝑜𝑚𝑚𝑒𝑛𝑡	𝑤𝑒𝑖𝑔ℎ𝑡 = 50× sin 2.4× ��&m�{{&,*~
��&klm

�

𝑀𝐼 = 𝑀𝐼𝑤𝑜𝑐 + 𝑀𝐼𝑐𝑤

Definition: The Software Maintainability Index Revisited (1991-2001)

Maintainability Index (MI) – Assessment

Fighting Bad PL/SQL18 04.12.2016

MI Complexity evaluation
>84 Reasonable:

An average programmer should be
able to comprehend and
maintain this code.

64..84 Challenging:
More senior skills most likely
required to comprehend and
maintain this code.

<64 Too complex:
Candidate for re-design or re-
factoring to improve
readability and maintainability.

Differences on file and
unit level due to

different number of
lines

Better Code

Fighting Bad PL/SQL19 04.12.2016

Even Better Code?

Fighting Bad PL/SQL20 04.12.2016

Improved
Maintainability Index

by 26!

Add comments for
further

"improvements"
WTF?

Fighting Bad PL/SQL21 04.12.2016

Core Messages

Every Metric Has Its Flaws…

Fighting Bad PL/SQL22 04.12.2016

For example

– Lines of code does not account for the code complexity

– Cyclomatic Complexity does not account for the length of a program and the
complexity of a statement

– Halstead Volume does not account for the number of
paths in the program

– Maintainability index cannot distinguish between
useful and useless comments and does not
account for code formatting

… But They Are Still Useful

Fighting Bad PL/SQL23 04.12.2016

To Identify complex programs

To measure code improvements and code degradations

To help you writing better PL/SQL, if you do not trust in metrics blindly

Get PL/SQL Cop – Now!

Fighting Bad PL/SQL24 04.12.2016

The PL/SQL Developer extension is free and has no limitations

Drop me an e-mail if you need an unlimited license key for the command line utility

Download from: https://www.salvis.com/blog/download/

Questions and Answers
Philipp Salvisberg
Senior Principal Consultant

Tel. +41 58 459 52 31
philipp.salvisberg@trivadis.com

04.12.2016 Fighting Bad PL/SQL25

