

Go to Brand Space for more cover options

Philipp Salvisberg
28th June 2023

The Right API
for a PinkDB
Application

Philipp Salvisberg
Data Engineering Principal
• Database Centric Development
• Model Driven Software Development
• Open-Source Development

philipp.salvisberg@accenture.com
https://www.salvis.com/blog

3

mailto:philipp.salvisberg@accenture.com
https://www.salvis.com/blog

Introduction

4

What Is PinkDB?

5

“(…) application architecture for database centric
applications. It is focusing on relational database
systems and is vendor neutral. The principles are
based on the ideas of SmartDB, with some
adaptions that make PinkDB easier to apply in
existing development environments. (…)”

https://www.salvis.com/blog/2018/07/18/the-pink-database-
paradigm-pinkdb/

https://www.salvis.com/blog/2018/07/18/the-pink-database-paradigm-pinkdb/
https://www.salvis.com/blog/2018/07/18/the-pink-database-paradigm-pinkdb/

6

SmartDB vs. PinkDB – Used DB Features

PinkDB

SmartDB

7

SmartDB vs. PinkDB – Enforced Principles

SmartDB
• PL/SQL API only
• No generated code
• Transaction Control

within API
• No exceptions

PinkDB
• Allows API-Views
• Allows generated code
• Allows Transaction

Control outside DB
• Allows exceptions

Principle
Of

Least
Privilege

Use DB as
processing

engine

8

Principle of Least Privilege

“The principle means giving a user account or process
only those privileges which are essential to perform
its intended function.”

https://en.wikipedia.org/wiki/Principle_of_least_privilege

“Minimizes the attack surface (…)
Reduces malware propagation (…)
Improves operational performance (…)
Safeguards against human error (…)”

https://www.paloaltonetworks.com/cyberpedia/what-is-the-principle-
of-least-privilege

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://www.paloaltonetworks.com/cyberpedia/what-is-the-principle-of-least-privilege
https://www.paloaltonetworks.com/cyberpedia/what-is-the-principle-of-least-privilege

Value of an API

9

Abstraction – Simplified Usage

10Source: https://de.wikipedia.org/wiki/Schuko#Spannung_und_Strom

https://de.wikipedia.org/wiki/Schuko

Standard – Stability, Interoperability

11Source: https://de.wikipedia.org/wiki/Länderübersicht_Steckertypen,_Netzspannungen_und_-frequenzen

https://de.wikipedia.org/wiki/L%C3%A4nder%C3%BCbersicht_Steckertypen,_Netzspannungen_und_-frequenzen

Hide Implementation Details

12

Minimalistic
View API

13

1:1 Views

create or replace view countries_v as
select * from countries;

create or replace view departments_v as
select * from departments;

create or replace view employees_v as
select * from employees;

create or replace view job_history_v as
select * from job_history;

create or replace view jobs_v as
select * from jobs;

create or replace view locations_v as
select * from locations;

create or replace view regions_v as
select * from regions;

14

We define the complete
column list as soon as we

make an incompatible
change

SELECT * ?
Where is the value of

a view then?

Bonus – PK/UK Constraints

alter view countries_v
add primary key (country_id) disable novalidate;

alter view departments_v
add primary key (department_id) disable novalidate;

alter view employees_v
add primary key (employee_id) disable novalidate;

alter view employees_v
add unique (email) disable novalidate;

alter view job_history_v
add primary key (employee_id, start_date) disable novalidate;

alter view jobs_v
add primary key (job_id) disable novalidate;

alter view locations_v
add primary key (location_id) disable novalidate;

alter view regions_v
add primary key (region_id) disable novalidate;

15

Bonus – Foreign Key Constraints

alter view countries_v
add foreign key (region_id) references hr.regions_v disable novalidate;

alter view departments_v
add foreign key (location_id) references hr.locations_v disable novalidate;

alter view departments_v
add foreign key (manager_id) references hr.employees_v disable novalidate;

alter view employees_v
add foreign key (department_id) references hr.departments_v disable novalidate;

alter view employees_v
add foreign key (job_id) references hr.jobs_v disable novalidate;

alter view employees_v
add foreign key (manager_id) references hr.employees_v disable novalidate;

alter view job_history_v
add foreign key (department_id) references hr.departments_v disable novalidate;

alter view job_history_v
add foreign key (employee_id) references hr.employees_v disable novalidate;

alter view job_history_v
add foreign key (job_id) references hr.jobs_v disable novalidate;

alter view locations_v
add foreign key (country_id) references hr.countries_v disable novalidate;

16

View-API Model

17

Read or Write Access?

18

API to Change Data

19

20

Options

• Instead of trigger for complex
views or business logic

• Integral part of the TAPI
• Can be generated

CRUD View

• CRUD pattern
• PL/SQL Package
• Business logic hooks

before/after insert, update,
delete

• Handles optimistic locking
• Handles temporal data
• Can be generated
• Business logic needs to be

implemented manually

TAPI

• Transaction
• One call for a complex process
• PL/SQL Package
• Cannot be generated
• Can use TAPIs

XAPI

21

CRUD – Updateable Views / TAPI

Advantages

• Easy interface
• Fast development of RESTful API and UI
• Can be generated using metadata/conventions

• Row(s) representation
• Audit columns
• Optimistic locking
• Temporal data
• Other business logic via hooks

vs

Disadvantages

• Technical Interface
• Exposes internals (model, column names)
• Caller is responsible for the transaction
• Hides business process, e.g.

• Exit of an employee
• Salary increase

• Instead of triggers and business logic at row
level leads to row-by-row processing.

• Row based API processes all columns for select
and update

• Incomplete generators can hinder evolution and
versioning of models and the API

22

XAPI – API for Transactional Business Funcs

Advantages

• Easy interface
• Business Language

• Procedure/function names
• Parameter names
• Payload structures (e.g., JSON, XML)

• Minimize / optimize interaction with the DB
• Transactions are automatically handled correctly
• Explicit, controlled API evolution
• Easier to move to another UI framework

vs

Disadvantages

• Manually crafted code (no generators)
• No default processing logic in the UI
• Designing a good initial version of an API is hard

Philipp’s
Going-in Position for
PinkDB APIs

23

24

API to Query Data

Manually Crafted Code

General

• 1:1 views based on tables
• Include surrogate key
• Business names

• View name
• Column name

• JSON for complex structures

Access

• Grant READ to role
• All columns
• VPD/RAS for

• Row-level access
• Masking sensitive columns

Abstractions

• SQL Macros
• Wrapped in views (etag)
• Exposed package functions

(temporal joins)

Views & Packages

25

API to Change Data

Manually Crafted Code

General

• XAPI
• Scalars data types, if feasible
• JSON for everything else
• No XAPI for reference data and

alike (using load scripts instead)

Access

• Grant EXECUTE to role
• Split package to match role-

level access
• Row-level access via views
• Dedicated procedures/functions

for sensitive columns

Abstractions

• SQL Macros
• Polymorphic Table Functions
• Dynamic SQL

(ad-hoc generators)

Packages

Finding
PinkDB Violations

26

27

Demo App
• Based on Scott’s dept/emp
• Converted to a PinkDB app
• PinkDB and PoLP tests

Source: https://github.com/PhilippSalvisberg/fighting-bad-db-apps

https://github.com/PhilippSalvisberg/fighting-bad-db-apps

Database Objects

28

Schema app:
Tables dept, emp

Schema app:
API-Views departments, employees, department_salaries

API-Packages department_api, employee_api

User app_connect:
No objects, only access to API

Key Messages

29

Value of an API

• Binding Contract on Abstraction
– Separation of concerns
– Simplified usage
– Stability
– Any API is better than none

• Simplified Change
– Implementation details are hidden
– Freedom to change as long as

the existing API is not affected
– Independent release cycle of DB app

30

Value of a PinkDB Application

• Security
– Connect user minimizes the attack surface
– Follow principle of least privileges

• Performance
– Uses the database as a processing engine
– Minimizes network roundtrips

• Maintainability
– Adding new features
– Changes behind the API
– Changes before the API (e.g. UI framework)

31

Thank You

